Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Pathway complexity in supramolecular assemblies presents a unique opportunity for a single, relatively simple system to exhibit a wide range of properties allowing for multifunctionality. In this study, we report redox‐enabled pathway complexity in amino acid‐functionalized perylene diimides (PDIs) and its consequence for the macroscopic hydrogel network. We show that chemical reduction and subsequent oxidation enable a kinetically trapped state which transforms into different network morphologies in response to heat and time. Our finding that pathway complexity in supramolecular systems can alter bulk material properties suggests the potential for future development of dynamic materials that achieve multiple macroscopic functions with a single building block.more » « lessFree, publicly-accessible full text available May 9, 2026
-
Free, publicly-accessible full text available February 24, 2026
-
Free, publicly-accessible full text available March 17, 2026
-
Free, publicly-accessible full text available November 15, 2025
-
{"Abstract":["Natural biological materials are formed by self-assembly processes and\n catalyze a myriad of reactions. Here, we report a programmable molecular\n assembly of designed synthetic polymers with engineered Bacillus subtilis\n spores. The bacterial spore-based materials possess modular mechanical and\n functional properties derived from the independent design and assembly of\n synthetic polymers and engineered spores . We discovered that\n phenylboronic acid (PBA) derivatives form tunable and reversible dynamic\n covalent bonds with the spore surface glycan. Spore labeling was performed\n using fluorescent PBA probes and monitored by fluorescence microscopy and\n spectroscopy. Binding affinities of PBA derivatives to spore surface\n glycan was controlled by aryl substituent effects. On the basis of this\n finding, PBA-functionalized statistical copolymers were synthesized and\n assembled with B. subtilis spores to afford macroscopic materials that\n exhibited programmable stiffness, self-healing, prolonged dry storage, and\n recyclability. These material properties could be examined using shear\n rheology, tensile testing, and NMR experiments. Integration of engineered\n spores with surface enzymes yielded reusable biocatalytic materials with\n exceptional operational simplicity and high benchtop stability. The\n reaction progress of the biocatalyses could be monitored with fluorescence\n specroscopy and absorption measurements, while spore leakage could be\n monitored by changes in solution turbidity (OD600). The use of bacterial\n spores as an active partner in dynamic covalent crosslinking sets our\n material apart from previous examples and grants control over\n biocontainment as well as the subsequent fate of the spores through\n stimuli-responsive reversal of the crosslink."],"Methods":["All experimental methods are briefly described in the README.md file, and\n fully detailed in the Supporting Information file for the paper article\n "Catalytic materials enabled by a programmable assembly of synthetic\n polymers and engineered bacterial spores"."]}more » « less
An official website of the United States government
